Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity.

Identifieur interne : 000453 ( Main/Exploration ); précédent : 000452; suivant : 000454

The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity.

Auteurs : Shervi Lie [Australie] ; Peter Banks [Royaume-Uni] ; Conor Lawless [Royaume-Uni] ; David Lydall [Royaume-Uni] ; Janni Petersen [Australie]

Source :

RBID : pubmed:29720420

Descripteurs français

English descriptors

Abstract

Nutrient fluctuations in the cellular environment promote changes in cell metabolism and growth to adapt cell proliferation accordingly. The target of rapamycin (TOR) signalling network plays a key role in the coordination of growth and cell proliferation with the nutrient environment and, importantly, nutrient limitation reduces TOR complex 1 (TORC1) signalling. We have performed global quantitative fitness profiling of the collection of Schizosaccharomyces pombe strains from which non-essential genes have been deleted. We identified genes that regulate fitness when cells are grown in a nutrient-rich environment compared with minimal environments, with varying nitrogen sources including ammonium, glutamate and proline. In addition, we have performed the first global screen for genes that regulate fitness when both TORC1 and TORC2 signalling is reduced by Torin1. Analysis of genes whose deletions altered fitness when nutrients were limited, or when TOR signalling was compromised, identified a large number of genes that regulate transmembrane transport, transcription and chromatin organization/regulation and vesicle-mediated transport. The ability to tolerate reduced TOR signalling placed demands upon a large number of biological processes including autophagy, mRNA metabolic processing and nucleocytoplasmic transport. Importantly, novel biological processes and all processes known to be regulated by TOR were identified in our screens. In addition, deletion of 62 genes conserved in humans gave rise to strong sensitivity or resistance to Torin1, and 29 of these 62 genes have novel links to TOR signalling. The identification of chromatin and transcriptional regulation, nutritional uptake and transport pathways in this powerful genetic model now paves the way for a molecular understanding of how cells adapt to the chronic and acute fluctuations in nutrient supply that all eukaryotes experience at some stage, and which is a key feature of cancer cells within solid tumours.

DOI: 10.1098/rsob.180015
PubMed: 29720420
PubMed Central: PMC5990653


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The contribution of non-essential
<i>Schizosaccharomyces pombe</i>
genes to fitness in response to altered nutrient supply and target of rapamycin activity.</title>
<author>
<name sortKey="Lie, Shervi" sort="Lie, Shervi" uniqKey="Lie S" first="Shervi" last="Lie">Shervi Lie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042</wicri:regionArea>
<wicri:noRegion>South Australia 5042</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Banks, Peter" sort="Banks, Peter" uniqKey="Banks P" first="Peter" last="Banks">Peter Banks</name>
<affiliation wicri:level="1">
<nlm:affiliation>High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH</wicri:regionArea>
<wicri:noRegion>Newcastle upon Tyne NE2 4HH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lawless, Conor" sort="Lawless, Conor" uniqKey="Lawless C" first="Conor" last="Lawless">Conor Lawless</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH</wicri:regionArea>
<wicri:noRegion>Newcastle upon Tyne NE2 4HH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lydall, David" sort="Lydall, David" uniqKey="Lydall D" first="David" last="Lydall">David Lydall</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH</wicri:regionArea>
<wicri:noRegion>Newcastle upon Tyne NE2 4HH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia janni.petersen@flinders.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042</wicri:regionArea>
<wicri:noRegion>South Australia 5042</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000</wicri:regionArea>
<wicri:noRegion>South Australia 5000</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29720420</idno>
<idno type="pmid">29720420</idno>
<idno type="doi">10.1098/rsob.180015</idno>
<idno type="pmc">PMC5990653</idno>
<idno type="wicri:Area/Main/Corpus">000564</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000564</idno>
<idno type="wicri:Area/Main/Curation">000564</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000564</idno>
<idno type="wicri:Area/Main/Exploration">000564</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The contribution of non-essential
<i>Schizosaccharomyces pombe</i>
genes to fitness in response to altered nutrient supply and target of rapamycin activity.</title>
<author>
<name sortKey="Lie, Shervi" sort="Lie, Shervi" uniqKey="Lie S" first="Shervi" last="Lie">Shervi Lie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042</wicri:regionArea>
<wicri:noRegion>South Australia 5042</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Banks, Peter" sort="Banks, Peter" uniqKey="Banks P" first="Peter" last="Banks">Peter Banks</name>
<affiliation wicri:level="1">
<nlm:affiliation>High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH</wicri:regionArea>
<wicri:noRegion>Newcastle upon Tyne NE2 4HH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lawless, Conor" sort="Lawless, Conor" uniqKey="Lawless C" first="Conor" last="Lawless">Conor Lawless</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH</wicri:regionArea>
<wicri:noRegion>Newcastle upon Tyne NE2 4HH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lydall, David" sort="Lydall, David" uniqKey="Lydall D" first="David" last="Lydall">David Lydall</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH</wicri:regionArea>
<wicri:noRegion>Newcastle upon Tyne NE2 4HH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia janni.petersen@flinders.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042</wicri:regionArea>
<wicri:noRegion>South Australia 5042</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000</wicri:regionArea>
<wicri:noRegion>South Australia 5000</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Open biology</title>
<idno type="eISSN">2046-2441</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Conserved Sequence (MeSH)</term>
<term>Gene Deletion (MeSH)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Gene Regulatory Networks (drug effects)</term>
<term>Genetic Fitness (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (genetics)</term>
<term>Naphthyridines (pharmacology)</term>
<term>Nitrogen (metabolism)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (growth & development)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aptitude génétique (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (génétique)</term>
<term>Délétion de gène (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Naphtyridines (pharmacologie)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Réseaux de régulation génique (effets des médicaments et des substances chimiques)</term>
<term>Schizosaccharomyces (croissance et développement)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Gene Regulatory Networks</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Réseaux de régulation génique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Naphtyridines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Naphthyridines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Conserved Sequence</term>
<term>Gene Deletion</term>
<term>Genetic Fitness</term>
<term>Humans</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Aptitude génétique</term>
<term>Délétion de gène</term>
<term>Humains</term>
<term>Stress physiologique</term>
<term>Séquence conservée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nutrient fluctuations in the cellular environment promote changes in cell metabolism and growth to adapt cell proliferation accordingly. The target of rapamycin (TOR) signalling network plays a key role in the coordination of growth and cell proliferation with the nutrient environment and, importantly, nutrient limitation reduces TOR complex 1 (TORC1) signalling. We have performed global quantitative fitness profiling of the collection of
<i>Schizosaccharomyces pombe</i>
strains from which non-essential genes have been deleted. We identified genes that regulate fitness when cells are grown in a nutrient-rich environment compared with minimal environments, with varying nitrogen sources including ammonium, glutamate and proline. In addition, we have performed the first global screen for genes that regulate fitness when both TORC1 and TORC2 signalling is reduced by Torin1. Analysis of genes whose deletions altered fitness when nutrients were limited, or when TOR signalling was compromised, identified a large number of genes that regulate transmembrane transport, transcription and chromatin organization/regulation and vesicle-mediated transport. The ability to tolerate reduced TOR signalling placed demands upon a large number of biological processes including autophagy, mRNA metabolic processing and nucleocytoplasmic transport. Importantly, novel biological processes and all processes known to be regulated by TOR were identified in our screens. In addition, deletion of 62 genes conserved in humans gave rise to strong sensitivity or resistance to Torin1, and 29 of these 62 genes have novel links to TOR signalling. The identification of chromatin and transcriptional regulation, nutritional uptake and transport pathways in this powerful genetic model now paves the way for a molecular understanding of how cells adapt to the chronic and acute fluctuations in nutrient supply that all eukaryotes experience at some stage, and which is a key feature of cancer cells within solid tumours.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29720420</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2046-2441</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>Open biology</Title>
<ISOAbbreviation>Open Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The contribution of non-essential
<i>Schizosaccharomyces pombe</i>
genes to fitness in response to altered nutrient supply and target of rapamycin activity.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">180015</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rsob.180015</ELocationID>
<Abstract>
<AbstractText>Nutrient fluctuations in the cellular environment promote changes in cell metabolism and growth to adapt cell proliferation accordingly. The target of rapamycin (TOR) signalling network plays a key role in the coordination of growth and cell proliferation with the nutrient environment and, importantly, nutrient limitation reduces TOR complex 1 (TORC1) signalling. We have performed global quantitative fitness profiling of the collection of
<i>Schizosaccharomyces pombe</i>
strains from which non-essential genes have been deleted. We identified genes that regulate fitness when cells are grown in a nutrient-rich environment compared with minimal environments, with varying nitrogen sources including ammonium, glutamate and proline. In addition, we have performed the first global screen for genes that regulate fitness when both TORC1 and TORC2 signalling is reduced by Torin1. Analysis of genes whose deletions altered fitness when nutrients were limited, or when TOR signalling was compromised, identified a large number of genes that regulate transmembrane transport, transcription and chromatin organization/regulation and vesicle-mediated transport. The ability to tolerate reduced TOR signalling placed demands upon a large number of biological processes including autophagy, mRNA metabolic processing and nucleocytoplasmic transport. Importantly, novel biological processes and all processes known to be regulated by TOR were identified in our screens. In addition, deletion of 62 genes conserved in humans gave rise to strong sensitivity or resistance to Torin1, and 29 of these 62 genes have novel links to TOR signalling. The identification of chromatin and transcriptional regulation, nutritional uptake and transport pathways in this powerful genetic model now paves the way for a molecular understanding of how cells adapt to the chronic and acute fluctuations in nutrient supply that all eukaryotes experience at some stage, and which is a key feature of cancer cells within solid tumours.</AbstractText>
<CopyrightInformation>© 2018 The Authors.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lie</LastName>
<ForeName>Shervi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Banks</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>High Throughput Screening Facility, Newcastle Biomedicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lawless</LastName>
<ForeName>Conor</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lydall</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute for Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Petersen</LastName>
<ForeName>Janni</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-0729-9335</Identifier>
<AffiliationInfo>
<Affiliation>Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia janni.petersen@flinders.edu.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide, South Australia 5000, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>13314</GrantID>
<Agency>Cancer Research UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>16-0052</GrantID>
<Agency>Worldwide Cancer Research</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>MR/L001284/1</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Open Biol</MedlineTA>
<NlmUniqueID>101580419</NlmUniqueID>
<ISSNLinking>2046-2441</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C553294">1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo(h)(1,6)naphthyridin-2(1H)-one</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009287">Naphthyridines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056084" MajorTopicYN="Y">Genetic Fitness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009287" MajorTopicYN="N">Naphthyridines</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Schizosaccharomyces pombe</Keyword>
<Keyword MajorTopicYN="Y">TOR substrates</Keyword>
<Keyword MajorTopicYN="Y">TORC1</Keyword>
<Keyword MajorTopicYN="Y">TORC2</Keyword>
<Keyword MajorTopicYN="Y">Torin1</Keyword>
<Keyword MajorTopicYN="Y">nutrient stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29720420</ArticleId>
<ArticleId IdType="pii">rsob.180015</ArticleId>
<ArticleId IdType="doi">10.1098/rsob.180015</ArticleId>
<ArticleId IdType="pmc">PMC5990653</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Arch Neurol. 2005 Apr;62(4):597-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 2010 Jun-Jul;102(2-3):122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20493208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Haematol. 2015 Mar;168(6):771-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25559471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2004 Aug;7(2):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15296714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 17;281(46):35404-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16921172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2015 Apr;20(4):292-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25651869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Jul;30(13):3396-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Nephrol. 2017 Jan;28(1):230-241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27297946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Jan 23;27(2):175-188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28041796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1975 Aug 14;256(5518):547-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1165770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 20;284(12):8023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Feb 16;25(4):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25639242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2016 Jun;41(6):532-545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27161823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2016 Jun;21(6):530-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27005325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):8452-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14610086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 31;442(7106):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2015 Jul 07;6(4):e00959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26152587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Nov 15;21(22):2861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2014 Jan 01;6(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24384571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2008 May;9(5):755-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jun 8;46(5):691-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Sep 13;297(5588):1833-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12193640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Jan;136(1):53-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8138176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2008 Aug;36(Pt 4):619-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 10;332(6035):1322-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Dec 14;294(5550):2364-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Jun;197(2):451-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24939991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1977 Jul;107(2):377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">872891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2014 Feb 15;3(2):161-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24463365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Feb 15;18(4):423-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Feb;10(2):339-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24300666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Mar 15;127(Pt 6):1346-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24424027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2007 Mar;14(3):200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17310250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2012 Dec;23(12):637-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22939742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:73-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 15;339(6125):1320-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23429704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Jun 1;123(Pt 11):1825-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20484663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Jul;13(7):2360-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12134075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Nov 25;203(4):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24247430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Dec 1;125(Pt 23):5840-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22976295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2013 Aug;12(4):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23551936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2009 Feb;118(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Nov;269(22):5338-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12423332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2016 Nov 15;129(22):4289-4304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27737912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2002 Apr;12(2):142-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 13;10(7):e0132240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26168240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Mar;15(3):1425-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2012 Aug 13;(66):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22907268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2009 Feb;37(Pt 1):273-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Feb;20(4):1254-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10648611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2014 Dec 01;5(1):145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25452419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Dec 21;10(12):e0144677</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26689777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2012 Sep 15;1(9):884-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23213482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2017 Dec;18(12 ):2197-2218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29079657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Sep;1793(9):1413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19344676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 May;28(10):3489-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18347059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2017 Mar 01;4(3):69-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28357392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 May 18;12 (5):e1006041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27191590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 23;147(5):1104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Immunopharmacol. 1994 Sep;16(9):711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7528736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Apr;7(4):e1001362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2016 Feb;17 (2):139-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26792937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1995 Oct 25;248(6):644-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Nov 3;16(21):6495-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9351831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2015 Jan 16;589(2):269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25500271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22900017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Translation (Austin). 2015 Feb 02;3(1):e983402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26779414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2016 Mar 01;2016(3):pdb.top079764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26933253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2005 Feb;30(2):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15691654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Spectr. 2016 Oct;4(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27763256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Oct 23;159(3):572-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25417108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 2;287(45):38158-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22992726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Sep 22;275(38):29900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10893413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2014 May 22;5:e1244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24853422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14967-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014;10 (11):2085-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25426890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Jul 15;10(14):2305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Apr 2;584(7):1287-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20083114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Nov 15;22(22):3184-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Feb;30(4):1049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2014 Nov 12;3(4):1027-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25396681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 6;285(5429):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 10;332(6035):1317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Aug 1;17(15):1829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2008 Feb;90(2):313-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 2;276(9):6463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2000 Mar;20(6):1899-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1992 Oct;119(2):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Nov 17;22(22):6045-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14609951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Feb;11(2):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22180499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Nov;5(11):1866-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):397-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Oct;4(10):861-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(8):e1003715</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2004 Apr;6(4):463-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15068787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Dec 15;15(24):3286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2014 Oct 30;5(20):9577-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25294810</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Lie, Shervi" sort="Lie, Shervi" uniqKey="Lie S" first="Shervi" last="Lie">Shervi Lie</name>
</noRegion>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
<name sortKey="Petersen, Janni" sort="Petersen, Janni" uniqKey="Petersen J" first="Janni" last="Petersen">Janni Petersen</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Banks, Peter" sort="Banks, Peter" uniqKey="Banks P" first="Peter" last="Banks">Peter Banks</name>
</noRegion>
<name sortKey="Lawless, Conor" sort="Lawless, Conor" uniqKey="Lawless C" first="Conor" last="Lawless">Conor Lawless</name>
<name sortKey="Lydall, David" sort="Lydall, David" uniqKey="Lydall D" first="David" last="Lydall">David Lydall</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000453 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000453 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29720420
   |texte=   The contribution of non-essential Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of rapamycin activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29720420" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020